- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Apprill, Amy (1)
-
Bluhm, Bodil A (1)
-
Brandt, Angelika (1)
-
Brix, Saskia (1)
-
Buhl-Mortensen, Pål (1)
-
Cohen, Anne (1)
-
Dannheim, Jennifer (1)
-
DeCarlo, Thomas M. (1)
-
Downey, Rachel V (1)
-
Egilsdóttir, Hrönn (1)
-
Eilertsen, Mari Heggernes (1)
-
Farfan, Gabriela A. (1)
-
Gaudron, Sylvie M (1)
-
Gebruk, Anna (1)
-
Golikov, Alexey (1)
-
Hansel, Colleen M. (1)
-
Hasemann, Christiane (1)
-
Hilario, Ana (1)
-
Jørgensen, Lis Lindal (1)
-
Kaiser, Stefanie (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Interest in the deep Arctic Ocean is rapidly increasing from governments, policy makers, industry, researchers, and conservation groups, accentuated by the growing accessibility of this remote region by surface vessel traffic. In this review, our goal is to provide an updated taxonomic inventory of benthic taxa known to occur in the deep Arctic Ocean and relate this inventory to habitat diversity. To achieve this goal, we collected data for Arctic metazoan deep-sea taxa from open-access databases, information facilities, and non-digitised scientific literature, limiting the collection to the area north of 66°N and below 500 m depth (excluding all shelf seas). Although notable progress has been made in understanding the deep Arctic using novel technologies and infrastructure, this data gathering shows that knowledge of deep-sea benthic Arctic communities remains very limited. Yet, through our compilation of habitat maps, we show that the Arctic contains a high diversity of geomorphological features, including slopes, deep basins, submarine canyons, ridges, and seamounts, as well as chemosynthesis-based and biogenic (biologically engineered) ecosystems. To analyse taxon richness and density, using both morphological and molecular data, we compiled 75,404 faunal records with 2,637 taxa. Phyla with the most records were the Arthropoda (21,405), Annelida (13,763) and Porifera (12,591); phyla with the most documented taxa were the Arthropoda (956), Annelida (566) and Mollusca (351). An overview of the dominant groups inhabiting the different geomorphological features highlights regions in the deep Arctic where data are particularly scarce and increased research efforts are needed, particularly the deep basins of the central Arctic Ocean. This scarcity of deep benthic Arctic biodiversity data creates a bottleneck for developing robust management and conservation measures in a rapidly changing region, leading to a call for international collaboration and shared data to ensure understanding and preservation of these fragile Arctic ecosystems.more » « less
-
Farfan, Gabriela A.; Apprill, Amy; Cohen, Anne; DeCarlo, Thomas M.; Post, Jeffrey E.; Waller, Rhian G.; Hansel, Colleen M. (, Coral Reefs)Abstract Corals nucleate and grow aragonite crystals, organizing them into intricate skeletal structures that ultimately build the world’s coral reefs. Crystallography and chemistry have profound influence on the material properties of these skeletal building blocks, yet gaps remain in our knowledge about coral aragonite on the atomic scale. Across a broad diversity of shallow-water and deep-sea scleractinian corals from vastly different environments, coral aragonites are remarkably similar to one another, confirming that corals exert control on the carbonate chemistry of the calcifying space relative to the surrounding seawater. Nuances in coral aragonite structures relate most closely to trace element chemistry and aragonite saturation state, suggesting the primary controls on aragonite structure are ionic strength and trace element chemistry, with growth rate playing a secondary role. We also show how coral aragonites are crystallographically indistinguishable from synthetic abiogenic aragonite analogs precipitated from seawater under conditions mimicking coral calcifying fluid. In contrast, coral aragonites are distinct from geologically formed aragonites, a synthetic aragonite precipitated from a freshwater solution, and mollusk aragonites. Crystallographic signatures have future applications in understanding the material properties of coral aragonite and predicting the persistence of coral reefs in a rapidly changing ocean.more » « less
An official website of the United States government
